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Abstract—Biorthogonal interpolating waveletshave beenapplied to
inhomogeneouselectromagnetic field modeling through the wavelet-
Galerkin schemeyielding a simple and versatile algorithm for the time
dependentMaxwell’s equations. The resulting schemesignificantly re-
ducesthe computational expenditure particularly in the modeling of
electrically large optical waveguideswhile maintaining high accuracy
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|. INTRODUCTION

Wavelets have beenwidely investigatedto improve the
efficiencgy in solving partial differential equations. Battle-
Lemaré wavelets have beenappliedto solve Maxwell's
equationsin time domainin [1], which enablesnumeri-
cal analysiswith lesscomputationakxpendituredueto its
highly lineardispersiorcharacteristicsomparedo thecon-
ventional spacediscretemethods. The shifted interpola-
tion propertyof the Daubechiesompactlysupportedscal-
ing function hasbeenutilized in [2] to accommodatéocal
samplingof the field despitethe large supportof the ba-
sis. The interpolationpropertyof the basisfunctionssig-
nificantly simplifiesthe numericalproceduregndincreases
the versatility of the numericalanalysis. The authorshave
extendedthe scheméy usingDaubechiescalingfunctions
with higherregularity [3] andhave shavn thatthe extended
schemehasan advantagein analyzingelectricallylarge in-
homogeneoustructureshoth for two-dimensiond4], [5],
andthree-dimensionfg].

Recently the authorsdevelopeda more efficient higher
orderschemd7] usingwaveletsof exactinterpolation[8],
[9]; the Deslauriers-Dubicinterpolatingfunctions[10], [11]
are adoptedas the fundamentalscaling basis and their
shifted and contractedversionsas the additional wavelet
basis. These functions constitute non-L? biorthogonal
basedhataresmooth,symmetric,compactlysupportecand
exactly interpolating. Unlike the Daubechiesorthogonal
wavelets[12], of which interpolationpropertyis limited to
thebasesf low regularity [3], the proposedasissetyields
a schemeof desiredorderof regularity aswell assavesthe

computationabverheador thetotalfield reconstruction.

This paper further extends the interpolating wavelet
schemeo arbitraryinhomogeneoumedia.By virtue of the
sophisticatecdhatureof the basisfunctions,the extensionre-
tainsthe simplicity of the numericalproceduravhile signif-
icantly increasinghe versatility Furthermoreby applying
waveletsonly wherehigher resolutionis desired,the pro-
posedschemeprovidesa sub-griddingcapability Verifica-
tion is performedby the analysisof two-dimensionatiielec-
tric waveguideshathave atypical dimensiorof widely used
opticalwaveguides.

Il. FORMULATION

We adoptthe Deslauriers-Dubc interpolatingfunction ¢
of order2p — 1 asascalingfunction,which satisfieghe so-
calleddilation relation[13]

+oo
pl@)= > hig(2t—k),

k=—o00

@)

wherethe filter coeficient by in is obtainedfrom the fil-
ter of the Daubechiecompactlysupportedwaveletsof p-
vanishingmomentshy, [12] by

+oo
hi= Y hmhm_i.
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For p = 2, {hjlk -3,-2,---,3} = {-0.0625,
0, 0.5625, 1.0, 0.5625, 0, —0.0625} and for p 4,
{h;|k = =7,-6,---,7} = {—0.00244141, 0, 0.0239258,
0,-0.119629, 0,0.5981451.0,0.5981450, —0.119629, 0,
0.02392580, —0.00244141}. Figurel shavs¢ forp = 2,4
and10. Thisfunctionhasevensymmetryandminimumsup-
portof [-2p+1, 2p— 1] to represena polynomialof degree
(2p—1).

Then, the wavelet function which createsthe ‘detail’
spacecanbechoseras

Y(z)

P2z —1). ®)
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Fig. 1. Deslauriers-Dulic interpolatingfunctionof order2p — 1 for p =
2,4 and10.

Although (3) is not a true wavelet sinceit hasno vanishing
moment,it generatesnultiresolutionanalysisandplaysthe
samerole as otherwaveletsin the context of the Galerkin
procedure.The dual functionscanbe chosenasthe Dirac
deltafunctionanda linearcombinationof thoseas

o) = o), (4)
M@ = Y (D). )
k=—2p+2

SincetheDirac deltais notin the spaceof squardntegrable
functions, the resulting basissetis in non-L? space. Let

fi(@) = f((z/Az) - j) for f = ¢, ¢, 6 and¢) with Az
beingthe spatialdiscretizationintenal, thenthe setof the
basisfunctionssatisfieghe biorthogonakelations
< ¢i,d; > 8ij, < iy >
< i ;> = <> = 0.

(Sij ’

(6)

We consideMaxwell’scurl equationgor inhomogeneous

isotropiclossymediain the 2D TE casewhereawave prop-
agatesn thexz-plane,

W = O, @
W o O ®
Jy+o%+a§t‘” = 8;”—66}[;, )

andthe constitutve equation
D, =¢E,. (10)

The electromagnetidield is first expandedin the scaling
function¢ (1) andthewaveletfunctions) (3) in spaceandin

the Haarscalingfunctionsh(t) [1] in time as
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andsimilarly for D, andH, whereh,(t) = h(&; —n+1)
and At beingthetime step. The expansioncoeficientsfor
the wavelettermsare definedon the Yeecell [14] at nodes
halfway betweenthe regular nodesin the direction of the
correspondingvaveletsasin [1]. As in the Galerkinpro-
cedure thefield expansionsaresubstitutedn the equations
andthey aretestedwith the dualfunctions(4) and(5). The
constitutve equation(10) is discretizedas

Nolo] _ 09
z'/,k,n+1/2 = E’k’Ezyk n+1/2 (13)
09 _ o)
Dzk+1/2,n+1/2 = Z (l)Ezka n+1/2

l

+ 6i7k+1/2E§J,}i|’(—/)1/2,n+1/27 (14)

andthe otherwaveletterms D¥-¥¢ and D¥:¥¥ areobtained
similarly. In (13)and(14),e denoteshelocaldielectriccon-

stantdefinedby ; = e(iAz,kAz), ande{'} (1) denotes
non-zeroinner productsbetweens and+ dueto the inho-

mogeneityof themedia,i.e.,

(9
S8
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<¢k(z)5($az) %Zk—l(z)>

*
= h* o 11(Eik—ig1/2 —Eik) -

(15)

An importantobsenation hereis that (13) hasa local re-
lation that doesnot requireotherwavelettermsfor update
while (14) involves E¥:#¢. Substituting(13) and (14) into
the discretizedequationsof (9), we eliminatethe flux den-
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sity D,, from thefinal time evolution equationsas [ in (16) and (17) is taken accordingto the numberof the

connectiorcoeficientsag, for £,¢ = ¢,4. Theconnection

Y90 2¢ = 0At Ly66 coeficientsag (1) aregivenby closedform expressions
ikyn+1/2 — 2¢ + oAt i,k,n—1/2
2At Y _ [ ddizay2 | - dé(z)
26+0At { [Zadﬂb zk+l+1/2,n age(l) = < dz iz ) = & |,_ R (29)
CL‘,¢’(/) d 03 D ~
+Zaw¢(l)Hi,k+z+1,n] agy(l) = <% wiz>
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= > (=¥ Tk gy , (20)
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199
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e dz : dz |, 5o
) 2¢ — oAt o) _ d’¢i+1/2 7
zyk+1/2 n4+1/2 = 26—|—0At( zk+1/2,n—1/2 %w(l) = < dx Vi
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20t =2y (DR, , (22)
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2¢ + o At Az - i kHA1/2,n p

which have beenevaluatednumericallyandlistedin Tablel
for p = 4 asanexample.

+Za¢¢

Y ]
i,k+I+1,n

TABLE |

AZL’ |: § : a¢¢ z+l+]_/2 k+1/2,n CONNECTION COEFFICIENTS FOR THE INTERPOLATING BASIS.

p=4
Zaw HEY wipom | =000 pom } , (A7) ¢ G Ugyp Ayg Gy
-8 -0.0000018
-7 0.0000397
where -6 | -0.0000109 | -0.0004033 0.0000109
P S -5 | -0.0008309 | 0.0030967 0.0008309
Y09 Z _bkN py.¢¢ (18) -4 | 0.0086543 | -0.0144141 | -0.0000017 | -0.0086543
Gh1/2n41/2 = L5 k)2 bkttt /2 -3 | -0.0419957 | 0.0394952 | 0.0044481 | 0.0426846
-2 | 0.1560101 | -0.0637289 | 0.3839979 | -0.2903309
is theinhomogeneitycorrectiontermthatis non-zerain the -1 |-1.3110341 | 0.0533016 0.0 | -1.8610039
vicinity of dielectricinterfaceover 2p — 1 cells and van- 0| 1.3110341 0.0 | -0.3839979 | 1.8610039
ishesin a homogeneougegion; the summationis taken for 11-0.1560101 | -0.0533016 | -0.0044481 | 0.2903309
I = [-p+1, p] with p beingtheindex of thescalingfunction. 2| 0.0419957 | 0.0637289 | 0.0000017 | -0.0426846
The otherfield componentef Ev¥¢, E¥-¥¥, andthosefor 3| -0.0086543 1 -0.0394952 0.0086543
; I . o 4| 0.0008309 | 0.0144141 -0.0008309
H, and H, canbe obtainedsimilarly. This formulationis 51 0.0000109 | -0.0030967 -0.0000109
highly versatile;the scalingfunction coeficients E¥:%¢ are 6l 0.0004033 '
firstupdatedhroughoutheanalysigegion,thenthewavelet 7 -0.0000397
coeficients E¥:¥ canbe updatedusing the knowledgeof 8 0.0000018

thescalingfunctioncoeficients. Althoughadditionalmem-
ory is requiredto store F for the previoustime stepinstead
of D,, the wavelettermscanbe appliedlocally at limited
regions,resultingin a sub-griddingalgorithm.

This proceduresenesto avoid matrix inversionthatis re-

ANALYSIS OF DIELECTRIC WAVEGUIDES

A dielectricwaveguideshaown in Fig. 2 is testedwith the

quired for other wavelet families suchas Battle-Lemargé, proposedschemausingthe Deslauriers-Dubcinterpolating
B-spline, Daubechiesorthogonal,and Cohen-Daubechies- functionof p = 4 (DD,4) aswell asthe corventionalFDTD
Feaueaubiorthogonalvaveletswhenit comego ainhomo- method[14]. Thewaveguideis surroundedy perfectelec-
geneougegion. The summatiorwith respecto the stencil tric conductomwalls. Threeanalysisconditionsweretested
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Fig. 2. Dielectricwaveguidetested.Refractve indexesn; = 3 andny =
2.828.

aslistedin Tablell. In schemdi), thewaveletterm ¢ was
addedonly at the core region of the waveguide wherethe
main pulsepropagatesndfiner resolutionis desired. This
is equivalentto the sub-griddingschemen the corventional
spacaliscretemethodsWhenFDTD is usedthediscretiza-
tion mustbe significantly smallerthanthe presentmethod,
resultingin excessve computationakxpenditurefor prac-
tical problems. The resultingtime seriesdataare plotted

TABLE Il
ANALYSISCONDITIONS FOR THE DIELECTRIC WAVEGUIDE.

Scheme Az Az  Time steps CPU time
(pm)  (pm) (s)
(i) DDi ¢pand ¢y 01 0.1 3180 3mls
(i) DD, dponly 01 0.5 5028 5mds
(iii) FDTD 0.025 0.0125 4022 11m21s

in Fig. 3. Goodagreemenhasbeenachiezed betweenthe
presentschemeand the corventional FDTD, while com-
putationalresourcesare significantly reduced;the present
schemerequiredonly lessthanonethird of CPU time and
aboutonefifth of memoryof thoseof FDTD.

IV. CONCLUSION

The biorthogonalinterpolatingwavelets have beenap-
plied to electromagnetidield analysisthrough the time-
domainwavelet-Galerkinscheme.The algorithmhasbeen
appliedto theanalysisof two-dimensionatiielectricwaveg-
uides that have typical dimensionof optical waveguides.
The interpolationbasesassociatedvith their dualsof lin-
earcombinationof Diracsyield scheme®f arbitraryorders
of regularity while saving the numericaloverheadof field
reconstructionprocess. The proposedschemeis particu-

DD4 0.1x0.1 Q9@
DD4 0.1x0.05
FDTD 0.025x0.0125

Ey

3 I I I I I
60 80 100 120 140

Time (fs)

Fig. 3. Comparisorof thetime seriesdataat outputpoint V5.

larly efficientfor electrically-lage problemssuchasoptical
waveguidesthat have beendifficult to solve with the con-
ventionalFDTD methoddueto the excessve computational
expenditure.
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