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Abstract—Biorthogonal interpolating waveletshave beenapplied to
inhomogeneouselectromagnetic field modeling through the wavelet-
Galerkin scheme,yielding a simpleand versatilealgorithm for the time
dependentMaxwell’s equations.The resultingschemesignificantly re-
ducesthe computational expenditure particularly in the modeling of
electrically largeoptical waveguideswhile maintaining high accuracy.
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I . INTRODUCTION

Waveletshave beenwidely investigatedto improve the
efficiency in solving partial differentialequations. Battle-
Lemaríe wavelets have been applied to solve Maxwell’s
equationsin time domain in [1], which enablesnumeri-
cal analysiswith lesscomputationalexpendituredueto its
highly lineardispersioncharacteristicscomparedto thecon-
ventional spacediscretemethods. The shifted interpola-
tion propertyof the Daubechiescompactlysupportedscal-
ing function hasbeenutilized in [2] to accommodatelocal
samplingof the field despitethe large supportof the ba-
sis. The interpolationpropertyof the basisfunctionssig-
nificantly simplifiesthenumericalproceduresandincreases
the versatility of the numericalanalysis.The authorshave
extendedtheschemeby usingDaubechiesscalingfunctions
with higherregularity [3] andhave shown thattheextended
schemehasanadvantagein analyzingelectricallylarge in-
homogeneousstructuresboth for two-dimensions[4], [5],
andthree-dimensions[6].

Recently, the authorsdevelopeda moreefficient higher-
orderscheme[7] usingwaveletsof exact interpolation[8],
[9]; theDeslauriers-Dubucinterpolatingfunctions[10], [11]
are adoptedas the fundamentalscaling basis and their
shifted and contractedversionsas the additional wavelet
basis. These functions constitute non-

���
biorthogonal

basesthataresmooth,symmetric,compactlysupportedand
exactly interpolating. Unlike the Daubechiesorthogonal
wavelets[12], of which interpolationpropertyis limited to
thebasesof low regularity [3], theproposedbasissetyields
a schemeof desiredorderof regularity aswell assavesthe

computationaloverheadfor thetotalfield reconstruction.
This paper further extends the interpolating wavelet

schemeto arbitraryinhomogeneousmedia.By virtue of the
sophisticatednatureof thebasisfunctions,theextensionre-
tainsthesimplicity of thenumericalprocedurewhile signif-
icantly increasingtheversatility. Furthermore,by applying
waveletsonly wherehigher resolutionis desired,the pro-
posedschemeprovidesa sub-griddingcapability. Verifica-
tion is performedby theanalysisof two-dimensionaldielec-
tric waveguidesthathaveatypicaldimensionof widely used
opticalwaveguides.

I I . FORMULATION

We adopttheDeslauriers-Dubuc interpolatingfunction �
of order �����
	 asa scalingfunction,which satisfiestheso-
calleddilation relation[13]����
���� ��������� ������ ����� �!�#"$�&% (1)

wherethe filter coefficient � �� in is obtainedfrom the fil-
ter of the Daubechiescompactlysupportedwaveletsof � -
vanishingmoments� � [12] by

� �� � ����' �!� � � ' � ' �(�*) (2)

For �+� � , , � ��.- "/� �102%3�4�$%3535657%80.9:�;,<�1= ) =?>@�?A ,
0, 0.5625, 1.0, 0.5625, 0, �1= ) =?>@�?AB9 and for �C� D ,, � �� - "#�E�GFB%3�1>2%356535�%HFB9I�J,@�1= ) =?=<�KD?D7	3D2	 , 0, 0.0239258,
0, �1= ) 	?	ML?>@�KL , 0, 0.598145,1.0,0.598145,0, �1= ) 	?	ML?><�?L , 0,
0.0239258,0, �1= ) =<=<� D<D2	6D2	K9 . Figure1 shows � for �N�:�.%OD
and 	6= . Thisfunctionhasevensymmetryandminimumsup-
portof PQ�4�R�TSU	?%H���G�V	RW to representapolynomialof degree�������X	M� .

Then, the wavelet function which createsthe ‘detail’
spacecanbechosenasY �Z
����[����� 
\�]	^� ) (3)
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Fig. 1. Deslauriers-Dubuc interpolatingfunctionof order _a`1bdc for `*e_Mf�g and cih .
Although(3) is not a truewaveletsinceit hasno vanishing
moment,it generatesmultiresolutionanalysisandplaysthe
samerole asotherwaveletsin the context of the Galerkin
procedure.The dual functionscanbe chosenasthe Dirac
deltafunctionanda linearcombinationof thoseasj����
��C� k.��
���% (4)jY ��
��C� �ml����!� �ml � � �m�I	^� �M�on � � ��� � n k.��
\� " � � ) (5)

SincetheDiracdeltais not in thespaceof squareintegrable
functions, the resultingbasisset is in non-

� �
space. Letp6q �Z
��r� p �O��
�s?tr
��T�#uB� for

p �v� ,
Y

,
j� and

jY
with tr


beingthe spatialdiscretizationinterval, thenthe setof the
basisfunctionssatisfiesthebiorthogonalrelationsw ��xO% j� qzy � k3x q % w Y xi% jY qIy � k3x q %w �7xO% jY qIy � w Y xi% j� qzy � = ) (6)

WeconsiderMaxwell’scurlequationsfor inhomogeneous
isotropiclossymediain the2D TE casewhereawaveprop-
agatesin thexz-plane,�|{1}�~��} � � �N}��4�}�� % (7)�|{1}�~��} � � }��4�} 
 % (8)� � S��|���� S } ���} � � }�~ �}�� � }�~ �} 
 % (9)

andtheconstitutiveequation� � � � �1� ) (10)

The electromagneticfield is first expandedin the scaling
function � (1) andthewaveletfunction

Y
(3) in spaceandin

theHaarscalingfunctions� �Z�i� [1] in timeas

�1� ��
�% � %i�i��� ����x�� � � � �!� � , � � � � �xZ� � � � � nO� ����x8��
��2� � � � �S � � � �^�xZ� � � nO� � � � � nO� � ��x8��
�� Y � � � �S � � � �2�x � ni� � � � � � � nO� � Y x ��
��2� � � � �S � � � �$�x � ni� � � � � nO� � � � � ni� � Y xO��
�� Y � � � �H9 � � � ni� � �Z�i��%
(11)

~�� ��
�% � %i�i��� ����x�� � � � �!� � , ~ � � � �x�� � � ni� � � � ��xO�Z
��$� � � nO� � � � �S ~ � � �^�x�� � � n � � � x ��
�� Y � � ni� � � � �S ~ � � �2�x � nO� � � � � ni� � � � Y x �Z
��$� � � nO� � � � �S ~ � � �$�x � nO� � � � � n � � Y x8��
�� Y � � nO� � � � ��9 � ���Z�i��%
(12)

andsimilarly for � � and ~�� , where� �(���i��� � �*�� � �N�*S n� �
and tr� beingthe time step. Theexpansioncoefficientsfor
the wavelet termsaredefinedon the Yeecell [14] at nodes
halfway betweenthe regular nodesin the direction of the
correspondingwaveletsas in [1]. As in the Galerkinpro-
cedure,thefield expansionsaresubstitutedin theequations
andthey aretestedwith thedual functions(4) and(5). The
constitutiveequation(10) is discretizedas� � � � �x�� � � � � ni� � � � x�� � � � � � �x�� � � � � ni� � % (13)� � � �^�xZ� � � nO� � � � � ni� � � �7��� �^�xZ� � ����� � � � � �x�� � � � � � � nO� �S � x�� � � ni� � � � � �^�x�� � � ni� � � � � nO� � % (14)

andtheotherwavelet terms � � � �2� and � � � �$� areobtained
similarly. In (13)and(14), � denotesthelocaldielectriccon-
stantdefinedby � x�� �X� � ���mtr
�%8"2t � � , and

� �^�xZ� � �Z��� denotes

non-zeroinner productsbetween� and
jY

dueto the inho-
mogeneityof themedia,i.e.,� �^�x�� � �Z��� � � � � � � � � ��
�% � ������ jY �M� � � � �3�� ���� � � � n � � x�� �^� � � nO� � � � x�� � � ) (15)

An importantobservation hereis that (13) hasa local re-
lation that doesnot requireotherwavelet termsfor update
while (14) involves � � � � � . Substituting(13) and(14) into
the discretizedequationsof (9), we eliminatethe flux den-
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sity � � from thefinal timeevolutionequationsas

� � � � �x�� � � � � nO� � � � � � �ot¡�� � S��ot¡� � � � � �x�� � � � �(nO� �S �<t¡�� � S��otr�£¢ 	t �¥¤ �2��¦ � ������� ~ � � � �xZ� � � � � ni� � � �S � �§¦ �2� �Z��� ~ � � �^�xZ� � � � � n � �r¨� 	t¡
 ¤ �2�§¦ � �2����� ~ � � � �x � � � nO� � � � � �S �2�§¦ �2���Z��� ~ � � �^�x � � � nO� � � � � ni� � � � ¨ � � � � � �xZ� � � � © % (16)

� � � �^�x�� � � ni� � � � � nO� ��� � � � �otr�� � S��otr�oª � � � �^�xZ� � � nO� � � � �(nO� �S�« � � �^�x�� � � ni� � � � �(nO� �M¬ �­« � � �^�xZ� � � nO� � � � � nO� �S �?tr�� � S��otr� ¢ 	t � ¤ � � ¦ �^� �Z��� ~ � � � �x�� � � � � nO� � � �S �2�§¦ �2���Z��� ~ � � �^�x�� � � � � n � � ¨� 	t¡
 ¤ �7��¦ � ������� ~ � � �^�x � � � nO� � � � � ni� � � �S � ��¦ �2� �Z��� ~ � � �$�x � � � n � � � ni� � � � ¨ � � � � �^�xZ� � � nO� � � � © % (17)

where« � � �^�x�� � � ni� � � � � nO� � � l�� �!� l � n � �^�xZ� � ������ x�� � � ni� � � � � � �x�� � � � � � � nO� � (18)

is the inhomogeneitycorrectiontermthat is non-zeroin the
vicinity of dielectric interfaceover �R�­�J	 cells and van-
ishesin a homogeneousregion; thesummationis taken for�o�®P¯����SN	?%Z�2W with � beingtheindex of thescalingfunction.
Theotherfield componentsof � � � �2� , � � � �$� , andthosefor~�� and ~�� canbe obtainedsimilarly. This formulationis
highly versatile;thescalingfunctioncoefficients � � � � � are
first updatedthroughouttheanalysisregion,thenthewavelet
coefficients � � � �^� canbe updatedusingthe knowledgeof
thescalingfunctioncoefficients.Althoughadditionalmem-
ory is requiredto store « for theprevioustime stepinstead
of ��� , the wavelet termscanbe appliedlocally at limited
regions,resultingin a sub-griddingalgorithm.

Thisprocedureservesto avoid matrix inversionthatis re-
quired for other wavelet families suchas Battle-Lemaríe,
B-spline, Daubechiesorthogonal,and Cohen-Daubechies-
Feauveaubiorthogonalwaveletswhenit comesto ainhomo-
geneousregion. The summationwith respectto the stencil

� in (16) and(17) is taken accordingto the numberof the
connectioncoefficients

¦<°8±
for ².%8³��´��% Y . Theconnection

coefficients
¦@°O± �Z��� aregivenby closedform expressions¦ � ���Z��� �¶µ¡· � x � nO� �· 
 ����� j��x �

�O¸ � · ���Z
��· 
 ���� � ��� � �1¹º % (19)¦ �^� �Z��� � µ¡· � x � nO� �· 
 ����� jY x � �O¸
� �ml����!� �al � ��m�I	^� �M�on � � ��� � n · ���Z
��· 
 ���� � �!� � �G»º �|¹º % (20)¦ �2���Z��� �¶µ · Y x � nO� �· 
 ����� j��x �

�8¸ �[� · ���Z
��· 
 ���� � �!� � � � � % (21)¦ �$� �Z��� � µ¡· Y x � nO� �· 
 ����� jY x � �O¸
�¼� �al��R�!� �ml � ��i�I	M� �^�(n ����(� � n · ����
��· 
 ���� � �!� � � � �M� � % (22)

which havebeenevaluatednumericallyandlistedin TableI
for �d��D asanexample.

TABLE I

CONNECTION COEFFICIENTS FOR THE INTERPOLATING BASIS.½�¾À¿Á Â3ÃiÃ Â3ÃmÄ Â3ÄRÃ Â3Ä�ÄÅ�Æ ÅZÇ È Ç3ÇRÇ3ÇRÇ^É8ÆÅ�Ê Ç È ÇRÇRÇ3ÇRË3Ì3ÊÅ�Í ÅZÇ^È Ç3ÇRÇRÇ ÉOÇ3Ì ÅZÇ È Ç3ÇRÇ ¿ ÇRË3Ë Ç^È ÇRÇ3ÇRÇ ÉOÇ3ÌÅ�Î ÅZÇ^È Ç3ÇRÇRÆ3ËRÇ3Ì Ç È ÇRÇRË3ÇRÌ3Í3Ê Ç^È ÇRÇ3ÇRÆ3ËRÇ3ÌÅ ¿ Ç^È Ç3ÇRÆRÍ6Î ¿ Ë ÅZÇ È Ç É ¿3¿ É ¿ É ÅZÇ È ÇRÇ3ÇRÇRÇ É8Ê ÅZÇ^È ÇRÇ3ÆRÍ6Î ¿ ËÅ�Ë ÅZÇ^È Ç ¿ ÉOÌ3Ì3Î3Ê Ç È ÇRËRÌ ¿ Ì6ÎRÏ Ç È ÇRÇ ¿R¿R¿ Æ^É Ç^È Ç ¿ Ï�Í3Æ ¿ ÍÅ�Ï Ç^ÈÐÉHÎ�ÍRÇ ÉOÇ É ÅZÇ È Ç3ÍRË6ÊRÏ�Æ3Ì Ç È ËRÆ3ËRÌRÌ6Ê�Ì ÅZÇ^È Ï�Ì3ÇRË3ËRÇ3ÌÅmÉ ÅaÉRÈ Ë ÉRÉOÇ3Ë ¿ É Ç È Ç3Î�Ë3ËRÇ ÉOÍ Ç^È Ç ÅaÉRÈ ÆRÍ ÉOÇ3ÇRË3ÌÇ ÉRÈ Ë ÉRÉOÇ3Ë ¿ É Ç^È Ç ÅZÇ È ËRÆ3ËRÌRÌ6Ê�Ì ÉRÈ ÆRÍ ÉOÇ3ÇRË3ÌÉ ÅZÇ^ÈÐÉHÎ�ÍRÇ ÉOÇ É ÅZÇ È Ç6Î�Ë3ËRÇ^É8Í ÅZÇ È ÇRÇ ¿R¿R¿ Æ^É Ç^È Ï�Ì3ÇRË3ËRÇ3ÌÏ Ç^È Ç ¿ ÉOÌ3Ì3Î3Ê Ç È ÇRÍRË6ÊRÏRÆRÌ Ç È ÇRÇ3ÇRÇRÇ É8Ê ÅZÇ^È Ç ¿ Ï�Í3Æ ¿ ÍË ÅZÇ^È Ç3ÇRÆRÍ6Î ¿ Ë ÅZÇ È Ç3ËRÌ ¿ Ì3Î3Ï Ç^È ÇRÇ3ÆRÍ6Î ¿ Ë¿ Ç^È Ç3ÇRÇRÆ3ËRÇ3Ì Ç È Ç^É ¿3¿ É ¿ É ÅZÇ^È ÇRÇ3ÇRÆ3ËRÇ3ÌÎ Ç^È Ç3ÇRÇRÇ ÉOÇ3Ì ÅZÇ È Ç3ÇRË3ÇRÌRÍ6Ê ÅZÇ^È ÇRÇ3ÇRÇ ÉOÇ3ÌÍ Ç È ÇRÇRÇ ¿ Ç3ËRËÊ ÅZÇ È Ç3ÇRÇ3ÇRËRÌ6ÊÆ Ç È ÇRÇRÇ3ÇRÇ ÉOÆ
I I I . ANALYSIS OF DIELECTRIC WAVEGUIDES

A dielectricwaveguideshown in Fig. 2 is testedwith the
proposedschemeusingtheDeslauriers-Dubuc interpolating
functionof �Ñ�ÒD (DD Ó ) aswell astheconventionalFDTD
method[14]. Thewaveguideis surroundedby perfectelec-
tric conductorwalls. Threeanalysisconditionsweretested
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Fig. 2. Dielectricwaveguidetested.Refractive indexes Ô7Õ�eVÖ and ÔB×�e_MØ Ù�_�Ù .
aslistedin TableII. In scheme(i), thewaveletterm � Y was
addedonly at the core region of the waveguidewherethe
mainpulsepropagatesandfiner resolutionis desired.This
is equivalentto thesub-griddingschemein theconventional
spacediscretemethods.WhenFDTD is used,thediscretiza-
tion mustbe significantlysmallerthanthe presentmethod,
resultingin excessive computationalexpenditurefor prac-
tical problems. The resultingtime seriesdataare plotted

TABLE II

ANALYSIS CONDITIONS FOR THE DIELECTRIC WAVEGUIDE.ÚHÛZÜ�Ý�Þ�Ý ßoà ß�á â$ã Þ�Ý7äæåçÝ�è�ä®é$ê<ë�åçã Þ�Ýìîí Þ!ï ìîí Þ�ï ì ä�ïì ã ïñð�ð7òôóRõ6õ÷öiø�ù&õ6ú ûHü ý ûHü ý þHýaÿiû þmÞ&ý�äì ã ã ï ð�ð ò ó3õ6õ��iø�� � ûHü ý ûHü û�� �iû��iÿ �mÞ
	iäì ã ã ã ï �Kð�â$ð ûHü û���� ûHü û�ý���� 	Oû���� ýiý�Þ
�Hýôä
in Fig. 3. Goodagreementhasbeenachievedbetweenthe
presentschemeand the conventionalFDTD, while com-
putationalresourcesare significantly reduced;the present
schemerequiredonly lessthanonethird of CPU time and
aboutonefifth of memoryof thoseof FDTD.

IV. CONCLUSION

The biorthogonalinterpolatingwavelets have beenap-
plied to electromagneticfield analysisthrough the time-
domainwavelet-Galerkinscheme.The algorithmhasbeen
appliedto theanalysisof two-dimensionaldielectricwaveg-
uides that have typical dimensionof optical waveguides.
The interpolationbasesassociatedwith their dualsof lin-
earcombinationof Diracsyield schemesof arbitraryorders
of regularity while saving the numericaloverheadof field
reconstructionprocess. The proposedschemeis particu-

-3
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3
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E
y�

Time (fs)

DD4 0.1x0.1  φφ φψ
DD4 0.1x0.05 φφ

FDTD 0.025x0.0125

Fig. 3. Comparisonof thetimeseriesdataatoutputpoint �K× .
larly efficient for electrically-largeproblemssuchasoptical
waveguidesthat have beendifficult to solve with the con-
ventionalFDTD methoddueto theexcessivecomputational
expenditure.
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